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Abstract

Microphone turbulence screens are used to suppress turbulent pressure fluctuations when measuring the acoustic

pressure inside a duct with flow. They consist of a long tube with a slit covered with porous material, and thus are also

called sampling tubes. Because they are not omnidirectional, it is necessary to calculate corrections when higher-order

modes are propagating in the duct. In order to calculate these corrections it is necessary to know the directivity of the

microphone turbulence screen, the propagation direction and energy of the duct modes and the flow velocity of the air in

the duct. This paper derives a theoretical formula for the directivity of a microphone turbulence screen. It shows that this

theoretical formula agrees better with experimental directivity data than the previously used empirical directivity formula.

Because the empirical directivity formula is not a function of the flow velocity, previous research has separated the modal

correction from the flow velocity correction. It is shown that it is not theoretically valid to separate the corrections, and

that doing so can lead to large errors at high frequencies in the outlet duct. A new method of calculating the modal

correction with flow is presented. This method uses a statistical room acoustics approach in contrast to the deterministic

numerical approach of the older method. The new method requires much less computing. It is shown that the new method

agrees fairly well with the old method for modal corrections without flow. The new method is compared with experimental

measurements of the combined modal and flow velocity corrections. Although the trend is the same, the experimental

results are higher than the theoretical results in the mid frequency range. The new method agrees reasonably well with the

corrections given in ISO 5136:2003.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Microphone turbulence screens (see Fig. 1) are used to suppress turbulent pressure fluctuations when
measuring the acoustic pressure inside a duct with flow. They consist of a long tube which is typically about
400mm long and 13mm in cross-section. Normally, there is a 13mm diameter microphone at one end and a
reflecting surface at the other end, which is often fitted with an external nose cone. The screen has a narrow
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

ay, az internal dimensions of rectangular
cross-section duct

a specific acoustic admittance ratio
a1, a2 boundary condition constants
A microphone turbulence screen internal

cross-sectional area
b microphone turbulence screen slit

width
c speed of sound in air
C modal and velocity correction factor
d distance from duct wall
dy, dz distance of measurement rectangle from

walls of duct
D diameter of cylindrical duct
e exp(1)
E complex amplitude of external sound

pressure wave
f frequency
f(y) desired ideal pressure squared response
F effective length ratio of microphone

turbulence screen

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2b0=k0Þ

2
q

G �2ik0b0
H increase in average pressure squared

value due to reflection at wall
i square root of minus one
i unit vector in direction of positive

x-axis
int() function that produces the integer part

of a number
j integer
J1() Bessel function of the first kind of order

one
k wavenumber amplitude
k0 o0/c
k1 real part of wavenumber inside screen
kc wavenumber at third octave band cen-

tre frequency
kj values of wavenumber used to calculate

average
kp magnitude of wavenumber projection

onto duct cross-section
kx, ky, kz components of wavenumber in x, y and

z directions
k wavenumber vector
kmn projection of wavenumber of duct mode

onto duct cross-section
K empirical directivity constant

K0 empirical directivity constant
L length of microphone turbulence screen

slit
m complex wavenumber inside screen or

duct mode index
m1 complex wavenumber inside extension

tubes
M Mach number
n duct mode index
N number of points used to calculate third

octave band average
N(kp) number of duct modes with wavenum-

ber projection less than kp

p complex sound pressure amplitude
pi, pr incident and reflected sound pressure

waves
px complex external sound pressure ampli-

tude at slit
p0 complex amplitude of external sound

wave
p(t, x) external sound pressure at time and

position x

P sound pressure
q complex amplitude of rate of volume

addition per unit volume
q, q+Dq limits of small range of ky values
Q rate of volume addition per unit volume
r specific airflow resistance
R relative measurement radius
S cross-sectional area of duct
t time
v velocity of external moving media
v velocity vector of external moving

media
w(y) angular distribution of sound energy in

duct
x spatial position vector relative to ex-

ternal moving media
x0 spatial position on x-axis relative to

stationary coordinates
x0 spatial position vector relative to sta-

tionary coordinates
x, y, z spatial variables
Zs specific acoustic impedance of surface
b0 r0cb/(2rA)
b01 value of b0 in extension tubes
b1 attenuation of sound pressure per unit

distance inside screen
y angle of incidence of sound
r0 ambient density of air
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o angular frequency when moving with
external media

o0 angular frequency at stationary point

r
2 Laplacian operator

q/qn normal gradient into surface
/S average value

x = 0 x = L

Rigid tube of cross sectional area A

Slit of width b, length L and specific airflow resistance r Microphone

Fig. 1. Microphone turbulence screen.
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(�1mm) slit, which runs the full length of the tube and is covered with porous material, or is manufactured
from a porous material. They are also called sampling tubes.

The research work described in this paper arose out of a research project to develop a flush mounted
microphone turbulence screen for use in a power station chimney flue. The development project required the
determination of the sound pressure at the inside wall of the chimney flue. Thus, the modal and flow velocity
corrections in the International Standard ISO 5136 [1,2] could not be used. The corrections in ISO 5136 are for
estimating the sound power propagating along a duct and thus assume a desired microphone sound pressure
squared response proportional to the cosine of the angle of incidence relative to the axis of the duct. For the
development project, the desired microphone response was omnidirectional. Hence, the modal corrections
would have larger magnitude. Thus new modal and velocity corrections had to be calculated. A new method
of calculating these corrections was developed and it was shown that the modal and velocity corrections could
not be separated as is done in ISO 5136:1990 [1]. The new method is presented in full in this paper. Since the
development of the method described in this paper, ISO 5136:2003 [2] has been published. The new version of
the standard contains combined modal and flow velocity corrections, which were calculated using a significant
improvement of the method used to calculate the modal corrections in the earlier version. The improved
method is different from the method described in this paper.

The microphone turbulence screen which was developed used anechoic terminations in conjunction with a
flush mounted microphone. This is in contrast to the conventional microphone turbulence screen, which uses
reflecting ends, one of which is the microphone diaphragm. The new method of calculating the modal and
velocity correction was applied to a conventional microphone turbulence screen and used to calculate the
corrections for estimating the sound power flowing down a duct. In order to do this, a Waterhouse style
correction taking account of the variation of sound pressure squared across the duct had to be developed.
These new corrections were compared to existing theoretical and experimental estimates of the corrections. It
was shown that the differences between the theoretical corrections were mainly due to different assumptions
about the directivity of the microphone turbulence screen, and the angular distribution of the sound energy in
a duct. The theoretical derivation of the microphone turbulence screen directivity was made more exact, and
the theoretical directivity formula was shown to agree better with experimental measurements than the
previous empirical formulae.

2. Theoretical directivity

The theoretical response of a microphone turbulence screen has been analysed by Neise [3], Wang and
Crocker [4] and Michalke [5,6]. The analysis is extended in this paper to cover the case of a microphone
turbulence screen with long tubes of the same cross-sectional area at each end of the slit (see Refs. [7,8]).
A microphone turbulence screen is shown in Fig. 1. The directional response of a microphone turbulence
screen can be determined theoretically by studying the propagation of sound within the microphone
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turbulence screen for different external excitations. The wave equation for sound pressure is

r2P�
1

c

q2p

qt2
¼ �r0

qQ

qt
, (1)

where P is the sound pressure, c the speed of sound, t the time, r0 the ambient density, and Q the net rate of
volume addition per unit volume. If the variation of Q with time is sinusoidal, then P will also be sinusoidal in
the steady state. Thus,

Q ¼ qeio0t and P ¼ peio0t, (2)

where o
0
is the angular frequency. The wave equation becomes

r2pþ k2
0p ¼ �io0r0q, (3)

where k0 ¼ o0/c is the wavenumber.
For a microphone turbulence screen with an internal cross-sectional area A of its tube, a slit width b and a

porous fabric covering the slit of specific airflow resistance r, the rate of volume addition per unit volume is

q ¼
bðpx � pÞ

rA
, (4)

where px is the complex external sound pressure amplitude. The specific airflow resistance of the fabric is the
ratio of the pressure difference across the fabric to the linear velocity of airflow just outside the surface of the
fabric. The one-dimensional wave equation for a microphone turbulence screen is

q2p
qx2
þ k2

0p ¼ �2k0b0ðpx � pÞ, (5)

where

b0 ¼
r0cb

2rA
(6)

and x is the spatial variable. This equation can be rearranged into

q2p
qx2
þm2p ¼ Gpx, (7)

where

m2 ¼ k2
0 � 2ik0b0 (8)

and

G ¼ �2ik0b0. (9)

Taking the square root of Eq. (8) with positive real part gives

m ¼ k1 � ib1. (10)

Define

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2b0
k0

� �2
s

. (11)

Then

k1 ¼ k0

ffiffiffiffiffiffiffiffiffiffiffi
gþ 1

2

r
(12)

and

b1 ¼ k0

ffiffiffiffiffiffiffiffiffiffiffi
g� 1

2

r
. (13)
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If the external sound pressure is sinusoidal in space

px ¼ Ee�ikxx (14)

and the wave equation becomes

q2p
qx2
þm2p ¼ GEe�ikxx. (15)

The solution of this equation is

p ¼
GEe�ikxx

m2 � k2
x

þ a1e
�imx þ a2e

imx. (16)

This solution is only valid if b0 is independent of x. This will always be assumed to be the case in this paper.
The first term of the solution is a particular integral of Eq. (15) and the last two terms are the solution of the
homogeneous version of Eq. (15). The constants a1 and a2 have to be determined from the boundary
conditions.

The boundary conditions for a sound wave are

qP

qn
þ

r0
Zs

qP

qt
¼ 0, (17)

where Zs is the specific acoustic impedance of the surface and qP=qn denotes the gradient of P in the direction
normal to the surface and from the space into the surface. The specific acoustic impedance of a surface is the
ratio of the sound pressure at the surface to the particle velocity in the direction normal and into the surface.
For a sound pressure which varies sinusoidally with time Eq. (17) can be rewritten as

qp

qn
þ ik0ap ¼ 0, (18)

where the specific acoustic admittance ratio a is given by

a ¼
r0c
Zs

. (19)

For a rigid surface a is equal to zero. If the tube continues on to plus or minus infinity, past the ends of the
microphone turbulence screen slit that is exposed to the external sound, the sound pressure is given by the
second or third term of the right-hand side of Eq. (16) providing an appropriate value b01 of b0 is used. The
first term is zero because there is no external sound pressure acting on the tube extension and a1 or a2 is zero
since there cannot be any sound coming from infinity. At the end of the tube, which extends to plus infinity

qp

qn
¼

dp

dx
¼ �im1a1e

�im1x ¼ im1p, (20)

where m1 is the value of m in the extension tube. Thus a1 ¼ m/k0. If the tube extension has no slit then b01 ¼ 0,
m1 ¼ k0 and a ¼ 1. If the slit and its covering fabric in the extension tube are the same as the slit and covering
fabric exposed to the external sound in the actual turbulence screen, an anechoic termination is obtained. In
this case b01 equals b0, and the m1 for the extension tube is the same as the m for the actual turbulence screen.

If the actual microphone turbulence slit runs from x ¼ 0 to L and the specific acoustic admittance ratio is
the same at both ends of the slit, the boundary conditions are

dp

dx
ð0Þ ¼ ik0apð0Þ, (21)

dp

dx
ðLÞ ¼ �ik0apðLÞ. (22)
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A large amount of tedious algebra enables Eqs. (16), (21) and (22) to be solved for the constants a1 and a2,
which can then be substituted back into Eq. (16) to obtain the sound pressure at x ¼ L. This gives

pðLÞ

pxðLÞ
¼
�2ik0b0
m2 � k2

x

1�
2ðk0aþ kxÞmeikxL þ ðk0a� kxÞ½ðmþ k0aÞeimL þ ðm� k0aÞe�imL�

ðmþ k0aÞ2eimL � ðm� k0aÞ
2e�imL

� �
. (23)

If a ¼ 0, Eq. (23) becomes

pðLÞ

pxðLÞ
¼
�2ik0b0
m2 � k2

x

1þ
kx

m

1þ e�2imL � 2eiðkx�mÞL

1� e�2imL

� �
. (24)

This equation agrees with Eq. (5) of Michalke [5] as modified by the errata. It applies for rigid reflecting
surfaces at both ends of the slit. If a ¼ m/k0, Eq. (23) becomes

pðLÞ

pxðLÞ
¼ �

2ik0b0ð1� eiðkx�mÞLÞ

2mðm� kxÞ
. (25)

This applies for the case of an anechoic termination at both ends of the slit.
The complex arithmetic can be removed from Eq. (25) by taking the modulus squared of both sides and

substituting for m using Eq. (10). The result is

pðLÞ

pxðLÞ

����
����
2

¼
k2
0b

2
0

k2
1 þ b21

1þ e�2b1L � 2e�b1L cos½ðk1 � kxÞL�

ðk1 � kxÞ
2
þ b21

. (26)

This equation agrees with Eq. (35) of Neise [3] if Neise’s approximations are corrected and his pressure
doubling factor is removed. Neise’s approximations are k1 ¼ k0, b1 ¼ b0 and b1)k1. The moduli squared of
Eqs. (23) and (24) were evaluated by programming computer spreadsheet functions to perform complex
arithmetic.

The equation of a plane sound wave is

pðt;xÞ ¼ p0e
iðot�k�xÞ, (27)

where p is the sound pressure at time t and position x relative to the medium, p0 the complex amplitude of the
sound wave, o the angular frequency of the sound wave and k the wavenumber vector. If the medium is
moving at velocity v, then relative to the medium, a stationary point appears to move with a velocity �v. Its
position relative to the medium is given by x0�vt, where x0 is its position relative to stationary coordinates and
where the moving medium coordinates correspond with the stationary coordinates at time t ¼ 0. The sound
pressure at this stationary point is given by

pðt;x0Þ ¼ p0e
i½ðoþk�vÞt�k�x0�. (28)

If v is in the direction of the positive x-axis and x0 is on the x-axis, then v ¼ vi and x0 ¼ x0i. The sound
pressure is given by

pðt;x0Þ ¼ p0e
i½ðoþkxvÞt�kxx0�, (29)

where kx is the component of the wavenumber k in the direction of the x-axis. If the sound wave is travelling at
an angle of y to the x-axis then

kx ¼ k cos y ¼
o cos y

c
, (30)

where k is the amplitude of k and c the speed of sound. If the Mach number is M ¼ v/c, then

pðt;x0Þ ¼ p0e
i½ð1þM cos yÞot�kx0 cos y�. (31)

Thus, the angular frequency of the sound wave observed at the stationary point is

o0 ¼ ð1þM cos yÞo. (32)
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If a stationary microphone turbulence screen is placed along the x-axis in the moving medium and
excited by the plane sound wave in the moving medium, the wavenumber k0 inside the turbulence screen is
given by

k0 ¼
o0

c
¼
ð1þM cos yÞo

c
¼ ð1þM cos yÞk (33)

and from Eqs. (30) and (33)

kx ¼
k0 cos y

1þM cos y
. (34)

The theoretical response and directivity of a microphone turbulence screen can be calculated using Eqs. (23)
and (34).

The theoretical response and directivity will not be valid when the cross-sectional dimensions of the
turbulence screen become comparable to the wavelength. The response will be inaccurate when the cross-
sectional dimensions become equal to a quarter of the wavelength because Eq. (4) fails. This is because the
external sound pressure acting through the resistance of the material covering the slit is no longer driving an
acoustic volume compliance but the zero acoustic impedance of a quarter wavelength depth. The directivity
will be incorrect when the cross-sectional dimensions become equal to half of the wavelength because Eq. (3)
will no longer be valid. This is because cross-mode propagation becomes possible and the one-dimensional
wave equation is no longer adequate. For the microphone turbulence screens considered in this paper with a
typical cross-sectional dimension of 13mm, this cross-sectional dimension becomes equal to a quarter of the
wavelength at 6.6 kHz and half of the wavelength at 13.2 kHz.

3. Modal and velocity correction

A microphone turbulence screen is conventionally calibrated in an anechoic room with zero flow
(Mach number M equals zero ) and with angle of incidence equal to zero. For non-zero Mach numbers
and non-zero angles of incidence a theoretical correction to the calibration must be calculated. If sound is
incident from different directions at the same time, the theoretical correction must be averaged over the
different angles of incidence with a weighting, which is proportional to the sound energy incident from
each direction. This approach assumes that sound incident from different directions is uncorrelated. If the
duct is anechoically terminated or has an open end whose dimensions are larger than a wavelength,
back reflections can be ignored. This means that it is only necessary to average over angles of incidence from
01 to 901.

The angular distribution of sound energy in a duct is not normally known. The obvious assumptions that
might be made about the angular distribution of sound energy in a duct are that every mode carries equal
power down the duct, that every mode has equal energy density, that equal energy is incident from every
element of angle of incidence or that equal energy is incident from every element of solid angle. The correction
factor C(o,M) is calculated by averaging the pressure-squared response jpðo; y;MÞ=pðo; 0; 0Þj2 of the
microphone turbulence screen with the appropriate sound energy angular distribution weighting factor w(y)
over angles of incidence y from 01 to 901 and dividing this into the average of the desired angular response
with the weighting function. This gives

Cðo;MÞ ¼
f ð0Þ þ

R p=2
0 f ðyÞwðyÞdy

jpðo; 0;MÞ=pðo; 0; 0Þj2 þ
R p=2
0 wðyÞjpðo; y;MÞ=pðo; 0; 0Þ2 dy

. (35)

The first terms in the numerator and denominator take account of the plane wave mode. For frequencies
below the cut on frequency of the first duct cross-mode, the second terms in the numerator and denominator
are set equal to zero, because there are no propagating cross-modes. Using Eqs. (35), (23) and (34), C(o, M),
can be calculated theoretically.

The function f(y) is the desired ideal pressure squared response as a function of angle of incidence. For
measurements of sound pressure squared f(y) is equal to 1. For measurements of sound power propagating
down a duct, f(y) is equal to cos y, since the sound power is proportional to the projection of the duct



ARTICLE IN PRESS
J.L. Davy / Journal of Sound and Vibration 306 (2007) 172–191 179
cross-sectional area onto a plane perpendicular to the direction of propagation of the sound. This projected
area is proportional to cos y.

For equal energy from every angle of incidence, w(y) is constant. For equal energy from every element of
solid angle, w(y) is proportional to sin(y). For every mode with equal energy density, w(y) is proportional to
the number of modes per unit angle of incidence. If every mode carries equal power down the duct, then the
modal energy densities are proportional to 1/cos y since the power carried down the duct is proportional to
cos y. In this case, w(y) is proportional to the number of modes per unit angle of incidence divided by the
cosine of the angle of incidence.

The correction factor C is the factor by which the desired values are greater than the values measured with
the microphone turbulence screen. Thus, the values measured with the microphone turbulence screen must be
multiplied by the correction factor. In practice, the correction factor will be expressed in decibels and will be
added to the measured sound pressure level. Since the correction factor will usually be positive, applying it will
normally mean increasing the measured sound pressure level.

The formula for the number of modes per unit angle of incidence will be derived for a rectangular cross-
section duct, since it is well known that the formula for the number of cross-modes depends asymptotically
only on the area of the cross-section and the wavenumber. (See for instance Balian and Bloch [9] and note that
area is the two-dimensional equivalent of three-dimensional volume.)

If the size of a rigid-walled rectangular duct cross-section is ay by az, the modal wavenumber vectors
kmn of the cross-modes are (mp/ay, np/az), where m and n are any non-negative integers. The kmn form a
regular lattice in the first quadrant of the ky kz plane with each point occupying an area in this
two-dimensional k space of p2/S, where S ¼ ayaz is the cross-sectional area of the duct. The area of
the first quadrant containing wavenumber vectors k whose magnitude is less than kp is pkp

2/4. Thus, the
number of modal wavenumber vectors less than kp is Skp

2/(4p). The modal wavenumber vectors km0 and k0n

which lie on the ky and kz axes have only been half-counted since half their area lies in other quadrants.
The total number of modal wavenumber vectors on an axis is (ay+az)kp/p, and counting an extra half for each
of these vectors gives the total number N of modal wavenumber vectors less than kp, for the square case ay

equals az, as

NðkpÞ ¼
k2

pS þ 4kp

ffiffiffiffi
S
p

4p
. (36)

The number of modes per unit of wavenumber magnitude is

dN

dkp

¼
2kpS þ 4

ffiffiffiffi
S
p

4p
. (37)

For a mode propagating down the duct, the square of the magnitude of its modal wavenumber is

k2
¼ k2

x þ k2
p, (38)

where kp is the magnitude of the projection of its modal wavenumber vector onto the cross-sectional area of
the duct. Now kp ¼ k sin y where y is the angle between the direction of propagation of the mode and the
centre line of the duct. Thus dkp/dy ¼ kcos y. Hence, the number of modes per radian is

wðyÞ ¼
dN

dkp

dkp

dy
¼

k2S sin 2yþ 4k
ffiffiffiffi
S
p

cos y
4p

. (39)

If every mode carries equal power down the duct, the weighting function is obtained by dividing the number
of modes per radian by the cosine of the angle of incidence. This gives

wðyÞ ¼
2k2S sin yþ 4k

ffiffiffiffi
S
p

4p
. (40)

In actual calculations with Eqs. (39) and (40), k will be approximated with k0.
Because the modulus squared of Eq. (23) cannot be integrated analytically, the integral in the denominator

of Eq. (35) must be integrated numerically. In this report, the trapezoidal rule was used with steps of 51.
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However for the choices of f(y) and w(y) given above, the integral in the numerator of Eq. (35) can be
integrated analytically:
1.
 For w(y) ¼ 1 and f(y) ¼ 1, Z p=2

0

f ðyÞwðyÞdy ¼
p
2
. (41)
2.
 For w(y) ¼ 1 and f(y) ¼ cos y, Z p=2

0

f ðyÞwðyÞdy ¼ 1. (42)
3.
 For wðyÞ ¼ ðk2S sin 2yþ 4k
ffiffiffiffi
S
p

cos yÞ=ð4pÞ and f(y) ¼ 1,Z p=2

0

f ðyÞwðyÞdy ¼
k2S þ 4k

ffiffiffiffi
S
p

4p
. (43)
4.
 For wðyÞ ¼ ðk2S sin 2yþ 4k
ffiffiffiffi
S
p

cos yÞ=ð4pÞ and f(y) ¼ cos y,Z p=2

0

f ðyÞwðyÞdy ¼
2k2S þ 3pk

ffiffiffiffi
S
p

12p
. (44)
5.
 For w(y) ¼ sin(y) and f(y) ¼ 1, Z p=2

0

f ðyÞwðyÞdy ¼ 1. (45)
6.
 For w(y) ¼ sin(y) and f(y) ¼ cos y, Z p=2

0

f ðyÞwðyÞdy ¼
1

2
. (46)
7.
 For wðyÞ ¼ ð2k2S sin yþ 4k
ffiffiffiffi
S
p
Þ=ð4pÞ and f(y) ¼ 1,Z p=2

0

f ðyÞwðyÞdy ¼
2k2S þ 2pk

ffiffiffiffi
S
p

4p
. (47)
8.
 For wðyÞ ¼ ð2k2S sin yþ 4k
ffiffiffiffi
S
p
Þ=ð4pÞ and f(y) ¼ cos y,Z p=2

0

f ðyÞwðyÞdy ¼
k2S þ 4k

ffiffiffiffi
S
p

4p
. (48)
If the weighting function is relatively constant, the integrals in Eq. (35) are basically measures of angular
bandwidth. This means that directivity values, which are more than 3 dB down will have little effect on the
correction factor C. Thus, for determining the correction factor C it does not matter greatly if our predictions
or measurements of directivity are in error for those values, which are more than 3 dB down.

The modulus squared of Eq. (23) has to be evaluated for third octave bands of noise. For those frequencies
where the rate of change of Eq. (23) as a function of frequency across the third octave band is relatively
constant it is sufficient to evaluate the modulus squared of Eq. (23) at the centre frequency of the third octave
band. Eq. (23) contains oscillating exponential functions with arguments of the form ikxL or ik1L. For low
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Mach numbers, kx and k1 are approximately equal to or less than k0. By the sampling theorem, a new
evaluation point should be used at least every time k0L increases by p. Thus, the number of points used to
calculate a third octave band average is given by

N ¼ 1þ int½ð21=6 � 2�1=6Þk0L=p�, (49)

where int() is the function that produces the integer part of a number. The average of the modulus squared of
Eq. (23) is averaged over the N values of kj given by

kj ¼ kc2
ð2j�N�1Þ=ð6NÞ, (50)

where kc is the value of k0 at the centre frequency of the third octave band.
Since the microphone turbulence screen integrates in the sound pressure domain, the effective length of the

microphone turbulence screen slit can be estimated by integrating e�b1x over the length of the slit from x

equals zero to x equals L. If the effective length is divided by the length L of the slit it gives the effective length
ratio

F ¼ ð1� e�b1LÞ=ðb1LÞ. (51)

This gives the fraction of the slit length over which the microphone turbulence screen appears to effectively
sample.

4. Waterhouse correction

If we only wish to measure the sound pressure squared, or the sound intensity in the direction parallel to the
centre line of the duct, at the position of the microphone turbulence screen in the duct, then the modal and
velocity corrections derived in the previous section are all that need be applied. However, we usually wish to
estimate the sound pressure squared or the sound intensity averaged across the entire cross-sectional area of
the duct. In this situation, it is necessary to apply a Waterhouse [10] correction to account for the fact that the
sound pressure is greater near the walls of the duct, because of the increase in sound pressure that occurs when
sound is reflected at a rigid surface. In a duct, unlike in a reverberation room, the microphone will often be in
the interference pattern created near the duct wall by the reflections. This means that the distance of the
microphone from the duct wall must also be taken into account.

If we have a plane wave of unit amplitude incident upon a rigid surface in the x z plane from the positive y

half-space, its sound pressure will be given by the equation

pi ¼ eiðot�kxxþkyy�kzzÞ (52)

and the reflected sound pressure wave will be

pr ¼ eiðot�kxx�kyy�kzzÞ. (53)

At time t ¼ 0, the sound pressure on the positive y-axis (x ¼ 0, y40, z ¼ 0) will be the sum of pi and pr.
Thus, the sound pressure is

p ¼ eikyy þ e�ikyy ¼ 2 cosðkyyÞ (54)

and the modulus squared of the sound pressure is

jpj2 ¼ 4 cos2 ðkyyÞ ¼ 2½cosð2kyyÞ þ 1�. (55)

The average value of the modulus of the sound pressure squared is

hjpj2i ¼ 2 (56)

and normalising Eq. (55) by dividing by Eq. (56), gives

jpj2

hjpj2i
¼ 1þ cosð2kyyÞ. (57)
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Propagating rectangular duct modes with wavenumber k have values of ky and kz, which lie uniformly
spread in the quarter circular quadrant in the ky kz plane bounded by

kyX0; kzX0; k2
y þ k2

zpk2. (58)

The area of this quarter circle quadrant is pk2/4. The area of this quadrant with values of ky between q and

qþ Dq is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� q2

q
Dq. Thus, if all propagating modes have the same amplitude and are uncorrelated, the

average value of Eq. (57) over all propagating modes is

H ¼
4

pk2

Z k

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

y

q
½1þ cosð2kyyÞ�dky. (59)

Performing the integration yields

H ¼ 1þ
J1ð2kyÞ

ky
, (60)

where J1() is the Bessel function of the first kind of order one. The average increase in pressure squared across
the duct due to the reflection at one duct wall is

hHi ¼
1

ay

Z ay

0

1þ
J1ð2kyÞ

ky

� �
dy ¼ 1þ

1

ay

Z ay

0

J1ð2kyÞ

ky
dy. (61)

For values of k for which kay is less than p, cross-modes with a non-zero wavenumber component in the
direction of the y-axis cannot exist. In this situation H is equal to one. The integrand of the last integral in
Eq. (61) is an oscillating function which decays rapidly as ky increases. For values of k for which kay is greater
than or equal to p, this integral can be approximated by replacing the upper limit of the integral with plus
infinity. This gives

hHi ¼ 1þ
1

ay

Z 1
0

J1ð2kyÞ

ky
dy ¼ 1þ

1

kay

. (62)

Taking account of the other three duct walls and ignoring interactions at the four corners gives

hHi ¼ 1þ
2

kay

þ
2

kaz

, (63)

where the second and/or third terms are set equal to zero if kay and/or kaz are less than p.
The second term of Eq. (60) is an oscillating function, which decays rapidly with increasing distance. If the

sound pressure squared is measured at a distance d from the duct wall such that kd is much greater than p,
then H is approximately equal to one, and the measured sound pressure squared must be multiplied by
Eq. (63) to obtain the average sound pressure squared across the duct. In practice, the microphone will often
be closer to the duct walls than p/k and the measured pressure squared has to be corrected for the position of
the microphone using Eq. (60). If the microphone is moved over a rectangle whose sides are at a distance of dy

and dz from the walls of the duct in the direction of the y and z axes, the dimensions of the measurement
rectangle are ay�2dy and az�2dz. Using Eq. (60) for each side of the measurement rectangle and the side
of the duct nearest to it, and averaging with a weighting equal to the length of the side of the measurement
rectangle, gives

H ¼ 1þ
ðaz � 2dzÞJ1ð2kdyÞ

ðay þ az � 2dy � 2dzÞkdy

þ
ðay � 2dyÞJ1ð2kdzÞ

ðay þ az � 2dy � 2dzÞkdz

. (64)

If the ratio of the width of the measurement rectangle to the width of the duct is the same in both the y and z

axes directions, the ratio will be called the relative radius and denoted by R. In this case, Eq. (64) can be
written as

H ¼ 1þ
2azJ1ðkay½1� R�Þ

ðay þ azÞkayð1� RÞ
þ

2ayJ1ðkaz½1� R�Þ

ðay þ azÞkazð1� RÞ
. (65)
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If kay and/or ka
z
are less than p, the corresponding J1() function is set to zero since there are no cross-modes

with wavenumber components in that direction. Because the J1() function oscillates, when calculating third
octave band average values, it is set to zero for values of its argument greater than its second positive zero. Its
second positive zero is 7.0. Thus, to estimate the average sound pressure squared across the cross-sectional
area of the duct, it is necessary to divide the measured sound pressure squared by Eq. (65) and multiply it by
Eq. (63).

Values for circular ducts are calculated using a square cross-sectioned duct of the same area. According to
Morse and Ingard [11], the cut on frequency of the first cross-mode in a cylindrical duct is 0.5861 c/D where D

is the diameter of the duct. The cut on frequency of the first cross-mode for a square cross-sectioned duct with
the same cross-sectional area as the cylindrical duct is c=ð

ffiffiffi
p
p

DÞ ¼ 0:5642c=D. This differs by less than 4%
from the true cylindrical value. Thus, approximating a cylindrical with a square cross-sectioned duct is
unlikely to lead to large errors.

5. Experimental directivity

Research work on the directivity of microphone turbulence screens has been dominated by an empirical
expression developed at Purdue University. The expression is [1,2,12–14]

pðyÞ
pð0Þ
¼

1

1þ kLy3K
¼

1

1þ f y3K 0
, (66)

where the empirical constants K and K’ are related by the equation

K 0 ¼
2pLK

c
. (67)

The values of the constant will be given for the case where the angle of incidence y is expressed in radians.
According to Bolleter [12], Flory and Crocker [13] originally developed the second version of Eq. (66) with a
value of K0 equals 0.00035 for frequencies below 2 kHz. Bolleter then states that it was later found that K0

equals 0.00045 gave a better approximation. The first form of Eq. (66) was given by Bolleter et al. [14] with K

equals 0.061 below 2 kHz. K equals 0.061 corresponds to Bolleter’s value of K0 equals 0.00045 for a
temperature of 20 1C and a slit length of 400mm. It should be noted that none of these researchers claimed
that the empirical formula could be used above 2 kHz.

The ISO standard 5136 [1,2] gives upper and lower limits for directivity. The upper limit uses Flory and
Crocker’s value of K0 equals 0.00035 for frequencies of 1, 2, 4 and 8 kHz. The lower limit uses K0 equals 0.0015
for 1 and 2 kHz, and K0 equals 0.0022 for 4 and 8 kHz. Neise et al. [15] used the value of K0 equals 0.0005. The
values of the empirical constants K and K0 for a temperature of 20 1C and a slit length of 400mm are shown in
Table 1.

A serious problem with the empirical formula (66) that will become apparent later in this paper is that it
does not include the flow velocity of the air in the duct. This leads to the contradiction that while the modal
corrections in ISO 5136:1990 [1] are calculated for a duct with no flow using Eq. (66), the velocity corrections
are calculated for a duct with no cross-modes using Neise’s version of Eq. (26). It will be shown later that this
approach leads to large errors in the total correction factor at the high frequencies. It is also more satisfactory
to use theoretical directivity formulae like Eqs. (23)–(26) rather than an empirical formula like Eq. (66).
Table 1

Values of the empirical directivity constants K and K0 for a temperature of 20 1C and a slit length of 400mm

Source K K0

Flory and Crocker o2 kHz, ISO upper limit 0.048 0.00035

Bolleter o2 kHz, Bolleter, Cohen and Wang o2 kHz 0.061 0.00045

Neise, Frommhold, Mechel and Holste 0.068 0.00050

ISO lower limit o4 kHz 0.205 0.0015

ISO lower limit X4 kHz 0.300 0.0022



ARTICLE IN PRESS
J.L. Davy / Journal of Sound and Vibration 306 (2007) 172–191184
Indeed, the main aim of this section is to show that the theoretical Eqs. (23)–(26) are in better agreement with
the experimental results than Eq. (66).

The directivities of three microphone turbulence screens were measured in an anechoic room using third
octave bands of random noise from 50Hz to 10 kHz. The lining and testing of this anechoic room has
already been described in the journal literature [16,17]. A 300mm diameter dual cone loudspeaker mounted in
a baffle was placed 3.6m from the centre of the microphone turbulence screen slit with the axis of the
loudspeaker on the line joining the loudspeaker and the microphone turbulence screen. The loudspeaker was
driven with pink noise, which was passed through a third octave graphic equaliser set to boost the high- and
low-frequency noise. The measured results were corrected for the effects of background noise. The
frequency response of the microphone turbulence screens was measured from 01 to 751 in steps of 151. The
directivity relative to the 01 response was then calculated for 151 to 751 in steps of 151. The values of the
directivity expressed in decibels calculated using the different formulae were subtracted from the experimental
directivity in decibels. The root mean square (rms) value of the 120 differences in decibels (24 frequencies
times 5 angles) was calculated for each of the formulae. The results for three different microphone turbulence
screens and the rms values across all three microphone turbulence screens (360 differences) are shown in
Table 2.

The results for a Brüel and Kjær Type UA0436 microphone turbulence screen are shown in column 2 of
Table 2. The theoretical directivity value used in the last row was calculated using Eqs. (24) and (34). A value
of 369 mks rayls was measured in situ for the specific airflow resistance of the material covering the slit. This
value of specific airflow resistance was used in the theoretical calculations. The empirical equation (66) and the
different empirical constants shown in Table 1 were used for the other rows.

Directivity measurements were also made on a microphone turbulence screen with anechoic terminations at
both ends of the slit [7,8]. The anechoic terminations consisted of 30m of plastic tubing with the same
internal cross-sectional area as the slit tube. The microphone was flush mounted in the wall of the tube
so that it caused no reflections. The slit was 500mm long and 1mm wide. The internal cross-section of
the slit tube was rectangular and measured 11.2mm � 11.8mm. Measurements were made with two different
values of specific airflow resistance material covering the slit. Column 3 of Table 2 shows the results
for a specific airflow resistance extrapolated to zero flow rate of 332mks rayls. Column 4 shows the results
for 493mks rayls. The theoretical results were calculated using Eq. (23) with a value of a equals 1 and
Eq. (34). The empirical values were calculated using the first part of Eq. (66) with a slit length L of 500mm.
The values of K were calculated from the K0 values using Eq. (67) with a temperature of 20 1C and L

equals 400mm.
Examination of Table 2 shows that the theoretical directivity equation agrees much better with the

experimental directivity results than any of the versions of the empirical directivity equation. This implies that
the theoretical directivity equation should be used instead of the empirical directivity equation when
calculating the modal correction factor.

When the individual directivity values were examined, none of the microphone turbulence screens
completely satisfied the ISO upper and lower limiting directivity equations. Thus, there is a need to revise these
equations in ISO 5136 [1,2].
Table 2

The rms values of the differences in decibels between the experimental third octave noise directivity and the calculated directivity using

different formulae

Brüel & Kjær Type UA 0436 Anechoic 332mks rayl Anechoic 493mks rayl Over all 3 screens

ISO upper 5.9 3.3 4.3 4.6

Bolleter et al. 5.3 2.8 3.8 4.1

Neise et al. 5.0 2.6 3.6 3.8

ISO lower 2.4 4.2 3.9 3.6

Theory 2.2 1.3 2.0 1.9

The range is the third octave band frequencies from 50Hz to 10 kHz inclusive and the angles of incidence from 151 to 751 in 151 steps.

Results are given for three different microphone turbulence screens and over all 3 microphone turbulence screens.
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6. Modal correction factors with no flow

Previously modal correction factors for ducts with no flow have been calculated using what will be referred
to as the deterministic method. The modal sound pressure squared due to each propagating mode has been
calculated at a point on the measurement path. The empirical directivity formula of the microphone
turbulence screen has then been applied to each modal pressure squared using the angle of incidence of the
mode and the results added together to give the total sound pressure squared at the point, using the
assumption that the modes are uncorrelated. The total sound pressure squared was then averaged over a
number of points on the measurement path. This averaged total sound pressure squared was used to calculate
the sound power being propagated down the duct by assuming that only plane wave propagation was
occurring.

The sound power carried down the duct by each mode was also calculated and the results added together to
give the actual sound power propagating down the duct. The correction factor was given by the difference
between the actual sound power and the sound power calculated from the averaged total sound pressure
squared using the plane wave propagation assumption. The calculated correction factors were then averaged
over a number of frequencies in each third octave band. This deterministic method does involve averaging
over the circular traverse and the third octave band of frequencies. Since it is applied to a range of duct
diameters, it should also involve averaging over duct diameters. It is very demanding computationally
and it takes longer to complete the calculations at high frequencies in large cross-sectional area ducts because
the number of propagating modes becomes large. According to Holste and Neise [18], the calculated
modal correction factors were extrapolated to higher frequencies and larger duct diameters for use in ISO
5136:1990 [1].

The method of calculating the modal correction factor described in Section 3 will be referred to in this paper
as the statistical method. Its advantage is that it does not need very much computing. The results from the
statistical method presented in this paper were performed in a spreadsheet.

According to Neise et al. [15], the modal correction factors in ISO 5136:1990 [1] were calculated using the
assumption that each mode carries equal sound power down the duct. This assumption is equivalent to the
assumption that the average over the cross-sectional area of each modal sound pressure squared is
proportional to 1/cosy, where y is the angle of the direction of propagation of the mode to the centre line of
the duct. If each mode has equal energy density, the average mentioned in the last sentence is constant across
modes.

In ISO 5136:1990 [1], modal corrections are given for six different ranges of circular cross-section duct
diameters. The smallest three ranges in the standard use a relative measurement radius of R equals 0.8, whilst
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the largest three ranges use a relative measurement radius of R equals 0.65. Bolleter calculated the modal
correction factors using the deterministic approach for both the upper and lower directivity limit curves given
in ISO 5136:1990 [1]. The modal corrections in ISO 5136:1990 [1] lie on a smooth curve roughly half way
between the modal correction curves for the upper and lower directivity limits. The ISO 5136:1990 [1]
corrections were limited to a minimum value of 0 dB and a maximum value of 6 dB. In Fig. 2, Bolleter’s
calculated modal corrections are compared with modal corrections calculated using the statistical method, the
empirical upper and lower directivity limits of ISO 5136:1990 and the assumption that each propagates equal
sound power along the duct. At high frequencies, Bolleter’s modal corrections are less than those of the
statistical method because he limited the inverse cosine increase caused by the assumption of equal modal
power to a maximum factor of 3.1. At other frequencies the agreement is reasonably good.

Neise et al. [15] have calculated modal correction factors for rectangular cross-section ducts with aspect
ratios of 1:1, 2:1 and 3:1. The larger of the duct cross-section dimensions took the values 0.25, 0.5, 1 and 2m.
Calculations were made for measurement rectangles with relative radii of both 0.4 and 0.6. The empirical
directivity equation (66) was used with an empirical constant of K0 equals 0.0005. The equal modal energy
density model was assumed for the sound energy angular distribution. The calculations were made using the
deterministic method described above. For comparison purposes the modal corrections were recalculated with
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the statistical method outlined in this paper using the same assumptions for angular sound energy distribution
and microphone turbulence screen directivity. A typical result is shown in Fig. 3 for a duct measuring 0.25
m� 0.25m. It is seen that there is fairly good agreement between the results calculated by the two different
methods. However, the deterministic results appear to be systematically larger than the statistical results for
the high frequencies. This systematic difference was much smaller for the larger duct sizes. It is believed to be
due to the fact that the cross-modes first start propagating at 901 to the axis of the duct as frequency is
increased. This means that the discrete individual modes propagate slightly closer to 901 than predicted by the
continuous distribution of the statistical approach. Thus the deterministic model produces slightly greater
values of modal correction factor than the statistical model because of the directivity of the microphone
turbulence screen. As the number of cross-modes increases with increasing frequency and increasing duct size
this difference decreases.

It should be pointed out that the results in Fig. 3 are given only for the purpose of comparing the
deterministic method with the statistical method. It is believed that the assumptions used give modal
correction factors which are too small. In particular, it has already been shown that the empirical directivity
equation does not agree as well with the experimental directivity results as the theoretical directivity equation.

Fig. 4 shows the comparison of the modal corrections with no flow calculated using the statistical method,
theoretical directivity and equal modal power or equal modal energy density with ISO 5136:2003 and ISO
5136:1990 for a circular duct of diameter 0.16m. Fig. 4 can be directly compared with Fig. 2. Fig. 4 shows that
the assumption of equal modal power gives higher corrections than the assumption of equal modal energy
density.

7. Modal correction factors with flow

The combined modal and flow velocity correction for ISO 5136:2003 [2] was calculated by Arnold (see Neise
and Arnold [18]). Arnold used the deterministic method with the theoretical rather than the empirical
directivity model. He used the assumption of equal modal energy density rather than equal modal power. ISO
5136:2003 [2] gives a combined modal and velocity correction for nose cones and foam balls of

�20 logð1�MÞdB; (68)

where M is the Mach number. This correction takes account of the effects of the flow on the propagation of
sound power in the duct. It is added to all the theoretical calculations given in this section.

In this section calculated modal correction factors with flow will be compared with experimental
measurements on fans made by Holste and Neise and by Bolton. The statistical method will be used with the
theoretical directivity given by Eqs. (24) and (34) and the assumption of equal modal energy density
(for Holste and Neise and for Bolton) or equal modal power (for Bolton only). The in-situ experimentally
measured specific airflow resistance of the material covering the slit of 369mks rayls was used in these
calculations.

The experimental difference between the fan sound power determined in a free field anechoic room and the
fan sound power determined in a duct are shown in Figs. 23 and 24 of Ref. [19]. The numerical values for the
case without cone were kindly faxed to me by Neise. In this case the values corrected for background noise
were used. The values for the case with a cone attached to the fan for the anechoic room measurements were
read from Fig. 23 of Ref. [19]. Because the in-duct measurements used in calculating the results would have
already had the modal corrections and the flow velocity corrections given by ISO 5136:1990 [1] added to them,
these differences are equal to the differences between the experimentally determined correction factors and the
ISO 5136:1990 [1] correction factors. In other words, the ISO 5136:1990 [1] correction factors correspond to
zero on these graphs. For this reason the modal corrections and flow velocity corrections of ISO 5136:1990 [1]
were subtracted from the statistical modal corrections with flow before comparing them with the experimental
differences.

The in-duct measurements were made in a duct with an inner diameter of 500mm. The cut on frequency for
the first cross-mode is 400Hz. Since, in this paper we are not interested in the radiation efficiency of the duct
end, the results are presented only from 400Hz upwards. The results are shown in Figs. 5(a)–(e). Figs. 5(a)–(d)
correspond to Figs. 23(a)–(d) of Ref. [19], respectively.
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Fig. 5. Comparison of the difference between the experimental or theoretical modal corrections with flow and the combined modal and

flow velocity correction of ISO 5136:1990 [1]. Fan (a) is a centrifugal fan with backward curved airfoil blades running at 1900 rev/min and

producing a linear velocity of 10.7m/s in the 500mm diameter duct. Fan (b) is a centrifugal fan with flat radial blades running at 1800 rev/

min and producing a linear velocity of 6.1m/s in the 500mm diameter duct. Fan (c) is a centrifugal fan with forward curved blades

(scirrocco blower) running at 700 rev/min and producing a linear velocity of 9.2m/s in the 500mm diameter duct. Fan (d) is an axial flow

fan with airfoil blades and outlet guide vanes running at 2970 rev/min and producing a linear velocity of 16.8m/s in the 500mm diameter

duct. Fan (e) is a centrifugal fan with backward curved sheet metal blades running at 1600 rev/min and producing a linear velocity of

9.2m/s in the 500mm diameter duct. Except for fan (e), the experimental results are given for the fans with and without a cone attached

when the anechoic room measurements were made. Experimental outlet duct without cone ’, experimental outlet duct with cone E,

theoretical outlet duct m, experimental inlet duct without cone &, experimental inlet duct with cone }, theoretical inlet duct n.

J.L. Davy / Journal of Sound and Vibration 306 (2007) 172–191188
Both inlet and outlet measurements are shown. The theoretical results and the experimental results with and
without cone show that there is a big difference between the corrections for outlet ducts and inlet ducts, since
the ISO 5136:1990 [1] corrections, which correspond to zero in graphs, are almost the same for outlet and inlet
ducts. In ISO 5136:1990 [1], most of the small differences that occur are in the wrong direction with the inlet
corrections being larger than the outlet corrections. The reason for this error is that Eqs. (24) and (34) show
that it is not possible to separate the modal corrections and the velocity corrections as has been done in ISO
5136:1990 [1]. The effect of the flow in the outlet duct is to decrease the wavenumber component parallel to the
axis of the duct (see Eq. (34)). This makes the turbulence screen more directional and the correction factor
larger for a given measurement frequency. In the inlet duct, the flow increases the component of the
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wavenumber which is parallel to the axis of the inlet duct. This makes the turbulence screen less directional
and the correction factor smaller for a given measurement frequency.

Apart from the axial flow fan in Fig. 5(d) (which also produced the highest linear flow velocity in the
measurement duct), the experimental results are generally significantly greater than the theoretical results.
Nevertheless, the theoretical results are in the right direction and substantially reduce the discrepancy
especially for outlet ducts at high frequencies. The theoretical and experimental inlet duct values are closer to
the ISO 5136:1990 [1] values (zero on these figures) than the outlet duct values.

Bolton [20] made measurements in a 610mm diameter inlet duct with a Brüel and Kjær microphone
turbulence screen type UA 0436 and a Brüel and Kjær 12.7mm microphone nose cone type UA 0386 at a
relative radius of R equals 0.65, and with a Brüel and Kjær polyurethane foam ball windscreen type UA 0237
and a Brüel and Kjær 12.7mm microphone nose cone type UA 0386 at a relative radius of R equals 0.5. The
linear flow velocity in the duct was 13.7m/s. The difference in relative radius was ignored since all three non-
microphone turbulence screen measurements were similar. The three non-microphone turbulence screen
-2

0

2

4

6

8

10

10 100 1000 10000

Frequency (Hz)

C
o

rr
e

c
ti
o

n
 (

d
B

)

Fig. 6. The difference between the average of measurements made with a nose cone at relative radii of 0.5 and 0.65 and a foam ball

windscreen at a relative radius of 0.5, and the measurements made with a microphone turbulence screen at a relative radius of 0.65. The

measurements were made in the 610mm diameter inlet duct of a fan. The difference E is compared with the statistical modal correction

with flow for equal modal power ’ and equal modal energy density m, and the combined modal and flow velocity correction from ISO
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Fig. 7. Comparison of the combined modal and flow velocity corrections for a 610mm diameter outlet duct with a flow velocity of 13.7m/s.
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Table 3

Differences between modal and velocity corrections from ISO 5136:2003 and those calculated using the statistical method of this paper

Velocity (m/s) �30 �15 �5 5 15 30

Average (dB) �0.3 �0.1 0.1 0.2 0.3 0.3

Standard deviation (dB) 0.4 0.4 0.4 0.5 0.5 0.6

Maximum (dB) 0.6 0.8 0.8 0.8 1.0 1.3

Minimum (dB) �1.0 �1.0 �1.0 �1.0 �1.0 �1.0
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measurements were averaged and the microphone turbulence screen measurements were subtracted from this
average to give an experimental estimate of the modal correction factor with flow. The theoretical results are
calculated with the statistical method using the theoretical directivity formulae (24) and (34) and the
assumption of equal sound power propagation down the duct by each mode or equal modal energy density.
The cut on frequency for the first cross-mode is 330Hz.

The experimental and theoretical corrections are shown in Fig. 6 together with the combined corrections from
ISO 5136:1990 [1] and ISO 5136:2003 [2]. In this inlet duct the theory and both standards produce fairly similar
corrections. (This would not be the case in the outlet duct at this flow rate as is shown in Fig. 7.) The trend of
these corrections is the same as the experimental results, but they significantly underestimate the experimental
results in the 1.25–4kHz range and overestimate the experimental results above 5 kHz. This underestimation and
overestimation is believed to be due to the actual angular distribution of the incident sound power on the
microphone turbulence screen being different from that assumed in the theoretical models.

The modal and flow velocity corrections given in Table D.1 of ISO 5136:2003 [2] were compared with those
calculated using the statistical method developed in this paper. The assumptions were the same as those used by
Arnold. In particular, the specific airflow resistance of the material covering the slit was assumed to be equal to
the characteristic impedance of air and the modes were assumed to have equal energy density. The mean,
standard deviation, maximum and minimum values of the differences across the third octave band frequencies
from 50Hz to 20kHz were calculated for each of the six different flow rates. The results are given in Table 3. The
reasonable agreement supports the modal and flow velocity corrections given in ISO 5136:2003 [2].

8. Conclusion

This paper has shown that the modal and flow velocity corrections for a microphone turbulence screen
should not be separated as is done in the international standard ISO 5136:1990 [1]. The separation of these two
corrections leads to large errors in the corrections for outlet ducts. This error has been corrected in ISO
5136:2003 [2].

The empirical directivity equation which is widely used for microphone turbulence screens does not agree well
with experimental directivity measurements. It should be replaced with the theoretical directivity equation.

This paper presents a new statistical method of calculating the combined modal and flow velocity
corrections for a microphone turbulence screen using a statistical room acoustics style of approach. This new
method agrees fairly well with the old deterministic approach for the no flow situation when the same
assumptions are used. The advantages of the new method are that it requires much less computing. Although
this new method produces modal correction factors with flow which are closer to the experimental results than
the corrections in ISO 5136:1990, the experimental results are still significantly different. This is believed to be
due to the actual angular distribution of the incident sound power being different from that assumed in the
theoretical models. However, the new method does agree reasonably well with the modal and velocity
correction factors given in ISO 5136:2003 [2].
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